## 第一章

#### 1.1 产品简介

JXL900\_CHIRP\_30 是全新一代的纯国产 LoRa 无线数传模块,该模块基于 ChirploT 技术而研发,其发射功率为: 30dBm, 33dbm, 36dbm等多种高功率输出;具有多种传输方式,支持AT和API 两种工作模块。工作频段可在400M,800M,900 频段传输,工作电压 3.3V。

JXL900\_CHIRP\_30 硬件采用完全自主研发的纯国产方案,具备高可靠性, 高灵敏度。**该模块可根据用户实际需求提供定制开发。** 

### 1.2 特点功能

- 采用全新一代 ChirploT 调制方式,带来更远的通讯距离,抗干扰能力更强, 拥有更高的灵敏度;
- 硬件采用完全自主研发的纯国产方案,实现了高度的自主可控性,有力地保障了核心技术的安全性和稳定性,确保了在关键技术上不受制于人,为用户提供了可靠的保障。
- 具备成熟且稳定的固件,展现出卓越的高可靠性,为用户提供坚如磐石的稳定保障。
- 采用的 MCU 具备更快的处理能力,在市场上相较于国内普通产品具有显著的优势,为用户带来高效便捷的使用感受;
- 支持串口升级固件,更新固件更加方便;
- 支持 AT 指令,使用起来更加便捷;
- 支持数据通信密钥,且无法被读取,极大提高了用户数据的保密性;
- 支持 CAD/MTD 功能,在发送前监听信道环境噪声,可极大的提高模块在

#### 恶劣环境下的通信成功率;

- 支持 RSSI 信号强度指示功能,用于评估信号质量、改善通信网络、测距。
- 支持定点传输、广播传输;
- 支持深度休眠,该模式下整机功耗约小于 3uA;
- 理想条件下通信距离可达 13km;
- 参数掉电保存,重新上电后模块会按照设置好的参数进行工作;
- 支持 2.4K~59.9Kbps 的数据传输速率;
- 工业级标准设计,支持-40~+85℃下长时间使用;

### 1.3 应用场景

- 智能城市:在智能城市的建设中,可以用于智能照明、智能交通、智能垃圾管理等方面,通过实现设备的远程控制和监测,提高城市管理的效率和便利性。
- 农业领域: 在农业领域的应用包括但不限于智能灌溉、作物生长监测、病虫害预警等,通过实时数据传输,帮助农民做出更科学的决策,提高农业生产效率。
- **工业自动化**:在工业生产过程中,可以应用于设备监控、环境监测、生产流程优化等方面,通过收集和分析数据,实现工业生产的智能化和自动化。
- 环境监测:在环境监测领域的应用包括空气质量监测、水质监测、噪音监测等,通过部署传感器收集环境数据,并通过网络将数据传输到中心服务器进行分析,有助于环境保护和污染治理。
- **智慧家居和楼宇**:可以用于智能家居系统中的温度、湿度、光照强度等环境 参数的监测,以及楼宇安全、能源管理等方面,通过智能终端收集数据并进

行远程控制,提升居住和工作的舒适度及安全性。


- **智能公用事业和计量**:适用于水表、燃气表等公用事业计量设备的远程读数 和监控,通过减少人工抄表的需求,提高计量数据的准确性和实时性。
- **智能供应链和物流**:在供应链管理中,可以用于追踪货物的位置、监控运输过程中的环境条件等,通过实时数据传输,优化物流配送路线和库存管理,降低运营成本。



# 第二章

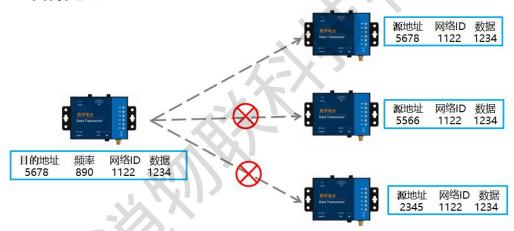
### 2.1 模块参数

| 射频参数     | 型号             | タ注             |  |
|----------|----------------|----------------|--|
| オリグ火(シ女X | JXL900_CHIRP_3 | 备注             |  |
| 最大发射功率   | 30.0±2dbm      | -              |  |
| 接收灵敏度    | -143dBm        | 工作带宽在 62.5kbps |  |
| 参考距离     | 13Km           | 实际距离受相关环境影响    |  |
| 调制方式     | ChirploT       | 传输距离更远,抗干扰能力更强 |  |
| 工作频段     | 902MHz         | 可通过 AT 指令进行修改  |  |
| 工作电压     | 3.3V           | 3.3V 可保证模块正常功率 |  |
| 通信接口     | TÎL            | 3.3v TTL 电平    |  |
| 发射电流     | > 850mA        | 模块瞬时峰值电流       |  |
| 休眠电流     | <3uA           |                |  |
| 接收电流     | 45mA           |                |  |
| 闲置电流     | 31mA           |                |  |
| 空中速率     | 59.9kbps (MAX) | 可更改            |  |
| 环形缓冲器    | 1024Btye       | 缓冲器最大 1024Btye |  |
| 天线接口     | UFL            | -              |  |
| 封装方式     | 直插式            | -              |  |
| 尺寸       | 34*26mm        | ±0.1mm         |  |
| 工作温度     | -40∼+85°C      | 工业级标准设计        |  |

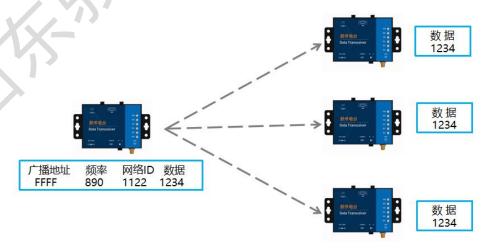


# 2.2 模块针脚定义

| 针脚 | 名称       | 方向 | 描述       | 针脚 | 名称       | 方向 | 描述 |
|----|----------|----|----------|----|----------|----|----|
| 1  | VCC      | Р  | Power    | 11 | RESERVED | -  | NC |
| 2  | TX       | 0  | Data out | 12 | RESERVED | -  | NC |
| 3  | RX       | I  | Data in  | 13 | RESERVED | -  | NC |
| 4  | RESERVED | -  | NC       | 14 | RESERVED | -  | NC |
| 5  | RESET    | I  | Reset    | 15 | RESERVED | -  | NC |
| 6  | RESERVED | -  | NC       | 16 | RESERVED |    | NC |
| 7  | RESERVED | -  | NC       | 17 | RESERVED | K  | NC |
| 8  | RESERVED | -  | NC       | 18 | RESERVED | _  | NC |
| 9  | RESERVED | -  | NC       | 19 | RESERVED | -  | NC |
| 10 | GND      | Р  | Ground   | 20 | UPDATE   | I  | FU |


# 第三章 传输方式

### 3.1 点对点




### 3.2 点对多点

### 3.11 单播发送

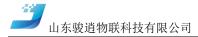


### 3.1.2 广播发送





# 第四章 AT 指令


### 4.1 AT 指令集

使用 AT 指令进行参数配置或查询需要在配置模式下进行;

用户可以查询该模块所支持的模块参数范围, AT 指令采用的波特率为 115200 8N1, 例如 ATSF ?来查询参数范围;

| 设置指令                                                                                                                                      | 说明                           | 回答状态                 | 描述                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-----------------------------------------------------------|
| +++ <cr><lf></lf></cr>                                                                                                                    | 进入 AT 指                      | COMMAND              |                                                           |
| TTTNCN/LI/                                                                                                                                | 令模式                          | MODE OK              | 该命令正确齿形后, 模块进入 AT 指令模式。                                   |
| ATE CD 15                                                                                                                                 | 退出命令模                        | COMMAND_E            | >>                                                        |
| ATE <cr><lf></lf></cr>                                                                                                                    | 式                            | XIT_OK               | 该命令正确执行后,模块退出 AT 指令模式。                                    |
| ATW <cr><lf></lf></cr>                                                                                                                    | 保存模块<br>AT 指令参<br>数          | PARA_SAVE_S<br>UCESS | 模块设置完参数退出指令模式必须保存参数, 否则断电重启参数失效。                          |
| ATNID<空<br>格>1122 <cr><l<br>F&gt;</l<br></cr>                                                                                             | 设置网络 ID                      | NETWORK_ID:<br>1122  | 注意:模块必须在相同的网络 ID 之内模块才能互相通讯.NETWORK_ID_2_BYTE 范围:0~0xFFFF |
| ATSID<空                                                                                                                                   | <u>''\ ₩</u> +#+h <i>t</i> t | COLUBER ID:O         | 注辛. 少丰塔也未自的 16 冷地址 同一人网络                                  |
| 格>0001 <cr><l< td=""><td>设置模块的<br/>源地址 ID</td><td>SOURCE_ID:0</td><td>注意:代表模块本身的 16 位地址,同一个网络<br/>之内模块的源地址不能相同。范围:0~0xFFFF</td></l<></cr> | 设置模块的<br>源地址 ID              | SOURCE_ID:0          | 注意:代表模块本身的 16 位地址,同一个网络<br>之内模块的源地址不能相同。范围:0~0xFFFF       |
| F>                                                                                                                                        | //ボメいるエーロン                   | 001                  |                                                           |

| ATDID<空<br>格>FFFF <cr><l<br>F&gt;</l<br></cr> | 设置模块的<br>目的地址 ID | DESTINATION<br>_ID:FFFF | 注意:通过此参数可以设置模块的广播发送与<br>定点发送;广播发送设置为:FFFF可实现模<br>块的广播发送;定点发送设置为:对方模块的<br>源地址 id 即可实现定点传输;范围:0~0xFFFF |
|-----------------------------------------------|------------------|-------------------------|------------------------------------------------------------------------------------------------------|
| ATFRE<空<br>格>5 <cr><lf></lf></cr>             | 设置频段             | FRE_915MHz              | FRE:频段<br>1-810/2-830/3-860/4-890/5-915/6-930;                                                       |
| ATBR<空<br>格>6 <cr><lf></lf></cr>              | 设置串口波<br>特率      | BAUD_RATE:1<br>15200    | BR:波特率<br>1-4800/2-9600/3-19200/4-38400/5-<br>57600/6-115200/7-230400<br>(默认 115200)                 |
| ATSF<空<br>格>3 <cr><lf></lf></cr>              | 设置扩频因            | SF_9                    | SF:扩频因子<br>1-SF_5/2-SF_6/3-SF_7/4-SF_8/5-SF_9<br>/6-SF_10/7-SF_11/8-SF_12                            |
| ATBW<空<br>格>3 <cr><lf></lf></cr>              | 设置调制带宽           | BW_250K                 | BW:带宽<br>1-BW_62_5K/2-BW_125K/3-BW_250K/4<br>-BW_500K                                                |
| ATCR<空<br>格>1 <cr><lf></lf></cr>              | 设置编码率            | CODE_RATE_4             | CR:编码率<br>1-CODE_RATE_45/2-CODE_RATE_46/3-<br>CODE_RATE_47/4-CODE_RATE_48                            |
| ATSB<空<br>格>1 <cr><lf></lf></cr>              | 设置停止位            | StopBits_1              | SB:停止位<br>1-USART_StopBits_1/2-USART_StopBits<br>_2/3-USART_StopBits_1_5                             |



| ATPB<空<br>格>1 <cr><lf></lf></cr> | 设置校验位 | Parity_No | SB:校验位<br>1-USART_Parity_No/2-USART_Parity_<br>Even/3-USART_Parity_Odd |
|----------------------------------|-------|-----------|------------------------------------------------------------------------|
|----------------------------------|-------|-----------|------------------------------------------------------------------------|

\*注意: <CR><LF>表示换行回车。

## 第五章 户外实测距离

#### 1.测试目的

测试点对点和点对多点模式下模块的通讯距离及通讯的稳定性。

#### 2. 测试条件

1.在城市两端道路复杂的环境下,采用 900M 5.1db 的吸盘天线,发送端和接收端天线离地一米,数据量为 64 个字节,发送间隔 1000ms 一次,分别进行测试。



2.在城市两端道路复杂的环境下,采用 900M 5.1db 的吸盘天线,发送端离地一米,接收端将天线贴地,数据量为 64 个字节,发送间隔 1000ms 一次,分别进行测试。测得距离为 1.7Km。



总结: 在双方距离 4.1km 且道路车流量较大的环境下测试了模块的通讯距离符合设计要求,且在 1.7km 的时候一端架高一端贴地,模块的通讯数据正常。



# 第六章

# JXL900\_CHIRP\_30 与国内常见 Lora 模块对比

|       | JXL900_CHIRP_30   | 某品牌    |  |
|-------|-------------------|--------|--|
| 工频    | 72M (MAX108M)     | 低于 48M |  |
| 调制方式  | ChirploT          | Lora   |  |
| 休眠电流  | 微安级               | 毫安级    |  |
| 缓冲器大小 | 1024 字节           | 128 字节 |  |
| 工作模式  | AT/API            | АТ     |  |
| 可靠性传输 | 重传确认              | 无      |  |
| 信道检测  | CAD/MTD CAD (需自升  |        |  |
| 过滤模式  | 网络 ID、源地址 ID 需自开发 |        |  |
|       | 信道 ID、目的地址 ID     | 而口八久   |  |